

OPEN INFORMATION EXTRACTOR FOR SEVA

Jitin Krishnan

Mentor: Patrick Coronado

Other Project Members:

Trevor Reed (NASA JPL)
Ben Brumback (George Mason University)
Youngyo Na (Rowan University)

SEVA: A Systems Engineer's Virtual Assistant

SEVA: ARCHITECTURAL COMPONENTS

SEVA: SYSTEM CONCEPT

SEVA: Knowledge Representation Example

NLP

First Order Logic (FOL) Formalism:

```
\forall x \exists y \text{ Instrument}(x) \land \text{Thermal Zone}(y) \Rightarrow \text{have}(x,y)
```

<u>Concepts</u>: Instrument, Thermal Zone (like classes in OOP)

<u>Instances</u>: x, y

Relationship: have

KB

∀ = for all
∃ = there exists

SEVA: Knowledge Representation Example

Instrument(STI)

STI is an instrument

Instantiations and relation between instances

ABox

part of(MassSpectrometerAP8717, STI)

MassSpectrometerAP8717 is a part of STI

 $Conduit \equiv Pipe$

Conduit is same as Pipe

Concepts and relations

TBox

MassSpectrometer ⊆ *Spectrometer* Subclass relationship

RBox

 $partOf \circ partOf \sqsubseteq partOf$ Transitive property of the role

Relations between relations

 $partOf \equiv hasComponent$ Inverse property of two roles

SEVA: Types of Knowledge

Open Information Extraction

- · Identifies wide range of domain-independent relations
- Traditional Information Extraction: uses predetermined templates

 For the experiment the domain language complexity is reduced – we work with only simple English sentences

NLP Basics

Sentence:

STI, an instrument, weighs 56 kg

Part-of-Speech:

NN = Noun VBZ = Verb form

Basic Dependencies:

SEVA – Targeted Open IE (TOIE)

Pattern Matching on the dependency tree

```
Extracting relations of type:
is-a, transitive-verb, has-property,
has-value
```

A set of universal dependencies:

nsubj, dobj, case, nmod, compound,
amod

```
Chunking example:
"NP:{(<CD.*>|<JJ.*>)<NN.*>+}"
```

NLTK, Stanford CoreNLP, POS Tagger

SEVA-TOIE: Comparison

Input Sentence	Stanford Open IE	ClausIE	AI2 Open IE	SEVA-TOIE
STI, an instrument, has a 2500 pixel CCD detector	("STI" "has" "2500 pixel CCD detector") incomplete/ missing information: "STI is an instrument"	("STI" "is" "an instrument") ("STI" "has" "a 2500 pixel CCD detector")	(STI; has; a 2500 pixel CCD detector) (STI; [is]; an instrument)	(STI; has; CCD detector) (STI; is-a; instrument) (CCD detector; has- property; 2500 pixel)
STI is an instrument with a TRL value of 5	("STI" "is" "instrument") ("STI" "is instrument with" "TRL value of 5") ("instrument" "is with" "TRL value of 5") ("STI" "is instrument with" "TRL value")	("STI" "is" "an instrument with a TRL value of 5") ("STI" "is" "an instrument")	(STI; is; an instrument with a TRL value of 5) (STI; is an instrument with; a TRL value)	(STI; is; instrument) (instrument; has-property; TRL value) (TRL value; has-value; 5)
STI is scheduled for acoustic testing on July 3, 2015 from 2:00PM to 6:00PM.	produced 13 triples ("STI" "is" "scheduled") ("STI" "is scheduled for" X) X = various combinations of remaining sentence	("STI" "is scheduled" "for acoustic testing on July 3 2015 from 2:00 PM") ("STI" "is scheduled" "for acoustic testing on July 3 2015 to 6:00 PM") ("STI" "is scheduled" "for acoustic testing on July 3 2015")	(STI; is scheduled; for acoustic testing) incomplete/ missing information: "on July 3, 2015 from 2:00PM to 6:00PM"	(STI; is; scheduled) (scheduled; for; testing) (testing; has-property; acoustic) (testing; has-value; 3 2015 July) (scheduled; from; 2:00 PM) (scheduled; to; 6:00 PM)]

Table 1: Output from Open Information Extractors. *Red* colored extractions are incomplete, incorrect, or noisy; *Blue* colored extractions need to be further granularized for ontology population.

THANK YOU!